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Abstract. In this paper, a novel approach for both center frequency and bandwidth tuning in a dual mode bandpass filter is demonstrated. The 

proposed filter is configured from a half wavelength multimode resonator structure. The Ultra-wide bandpass response of the multimode 

resonator is extracted using an inter-digital feed structure which provides good input/output coupling. By deploying stepped admittance 

structure perturbation element into the symmetrical plane of the multimode resonator, the dual-mode response is achieved with three upper 

stopband transmission zeros (TZs). The coupling between two degenerative mode frequencies is controlled by the admittance ratio (Y) of the 

stepped admittance structure. Changing admittance ratio (Y) of stepped admittance structure, resulted in the change in even mode resonance 

frequency and location of three upper stopband transmission zeros while keeping odd mode frequency fixed. The proposed filter has a size of 

14.0 x 30.0 mm2. 
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1. Introduction 

Modern wireless communication system needs compact, 

high frequency selective, wide stopband tunable bandpass 

filters. In literature many tunable filters have been reported 

using dual mode resonators [1]-[12].Tuning is achieved in 3 

ways i) Fixed center frequency and tunable bandwidth ii) 

Fixed bandwidth and tunable center frequency iii) Both 

center frequency and bandwidth tuning. In literature, 

electronic tuning also has been reported where 

semiconductor and MEMs switches are used for center 

frequency and bandwidth tuning. By varying dimensions of 

perturbations in microstrip loop resonators even mode 

frequencies are controlled and thus bandwidth tuning has 

been reported in [5]-[7]. By varying size of T shaped DGS 

and inter-digital capacitance, center frequency of ultra 

wideband filter is controlled [2]. S-band microstrip triple 

mode bandpass [3] filter has been proposed with T shaped 

resonators, both upper and lower transmission zeros were 

controlled by tuning the length of the T resonator. Parallel-

coupled stepped impedance resonators (SIRs) [4] have been 

proposed to design Bandpass filters with an optimal 

rejection bandwidth. Dual-mode bandpass filter using square 

loop resonator DGS [8] with square patch in corner has been 

proposed to excite odd and even modes. But filter suffers 

from poor Roll-off at lower passband edge. An open loop 

resonator [10] with inter-digital unit cells which provide 

capacitive loading effect has been used to configure dual 

mode filter. By varying gap between fingers and width of 

fingers odd and even mode resonant frequencies were 

observed. But filter suffers from poor frequency selectivity. 

Dual mode DGS resonator composed of folded slot line 

resonator (FSLR) and coplanar stepped impedance resonator 

(CSIR)  has been  proposed to develop filter. Each of the 

resonator controls one resonant frequency [12]. 

In this paper a novel approach for center frequency and 

bandwidth tuning in MMR based dual mode BPF is 

proposed. Using an inter-digital feed structure Ultra-wide 

bandpass response of multimode resonator is obtained. By 

deploying stepped admittance structure perturbation in to the 

symmetrical plane of multimode resonator, dual mode 

response is achieved with three upper stopband transmission 

zeros(TZs).Change in admittance ratio(Y) of stepped 

admittance structure, results in shift in even mode resonance 

frequency and location of three upper stopband transmission 

zeros. 

2. Modeling of UWB bandpass filter from MMR 

Basic structure of half wavelength MMR is depicted in 

Figure 1 which consists of low and high impedance sections 

Z1 and Z2 respectively and resonates at fundamental 

frequency f0=4.4 GHz and at 2f0 = 10.14 GHz,and 3f0=14.6 

GHz as shown in Figure 2. By providing proper coupling at 

input and output through an inter-digital feed structure UWB 

filter is modeled as shown in Figure 3. Figure 4 shows 

response of UWB response. The proposed resonator is 

modeled using RT Duroid substrate with dielectric constant 

10.8 and thickness 1.27mm and tangential loss of 0.0023.  

Dual- mode bandpass filter is configured by deploying 

stepped admittance structure perturbation in to the 

symmetrical plane of proposed MMR as shown in Figure 5 

which excites two degenerative odd and even mode resonant 

frequencies. As filter topology is symmetrical, odd and even 

mode resonant frequencies are analyzed based on the 

equivalent circuits shown in Figure 6 and 7, respectively.    

 
Fig.1.Structure of multimode resonator 
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Fig.2. Resonance frequencies of MMR 

.  

Fig.3. Proposed UWB Filter  

  

Fig.4. UWB response of MMR 

Fig.5. Proposed MMR based dual mode Bandpass filter 

 
Fig.6. Equivalent circuit for odd mode resonance 

 
Fig.7. Equivalent circuit for even mode resonance 

Mathematical model for Odd and even mode resonance 

frequencies are given by expressions (1) and (2) 

respectively. 
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where, c is velocity of light, eff effective dielectric 

constant. For an admittance ratio (Y) of 0.8, the response of 

filter is shown in Figure 8. Odd and even mode frequencies 

are found at 4.55 GHz and 6.0 GHz, respectively with three 

upper stopband transmission zeros at 8.88 GHz, 9.75 GHz 

and 10.86 GHz. From simulation results, it is observed that 

the designed filter has  input reflection coefficient (S11) > -

10 dB and transmission loss (S21)  -0.08 dB in pass band and 

bandwidth of 3.4 GHz. The dimensions of proposed filter are 

as follows. 

L1=5.7mm, W1=0.8mm, L2=2.7mm, W2=0.5mm, W3=1.1 

mm, W4=0.33mm, L4=0.7mm, L5=2.7mm, W5=(0.6, 0.7, 

0.9)mm, W6=0.1mm, L6=0.2mm, L7=2mm, L8=0.2mm, 

L9=0.3mm and L10=1.4mm . 

3. Tuning Center frequency and Bandwidth  

Both center frequency and bandwidth of the proposed 

filter are tuned by varying admittance ratio(Y) of stepped 

admittance perturbation as 0.7, 0.77 and 0.8. From 

simulation results shown in Figure 9. it is observed that, 

even mode resonance frequency changes with change in 

admittance ratio where as the odd mode resonance frequency 

remains fixed. In Figure 10 shows shift in position of upper 

stop band transmission zeros with changing admittance ratio 

(Y).   

4. Result and discussion 

To tune both center frequency and bandwidth, admittance 

ratio Y is varied as 0.7, 0.77 and 0.8. For Y=0.7, 0.77, and 

0.8, even mode resonance frequencies are found at 5.75 

GHz, 6.0 GHz, and 6.1 GHz respectively. Whereas for odd 

Fig.8. Response of proposed filter for Y=0.8 
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Fig.9. Shift in even mode resonant frequency. 

 

 
Fig.10. Shift in position of upper stop band  transmission zeros in 

S21 response. 

Tablel 1: Measured values of center frequency and 

bandwidth for various values of admittance ratio (Y) 

 

mode frequency is at 4.6 GHz  for all values of Y. For Y=0.7 

two upper stop band transmission zeros are reported at 8.44 

GHz and 9.8 GHz. For Y=0.77, three upper stop band 

transmission zeros are reported at 8.750 GHz, 9.75 GHz, and 

10.50 GHz, respectively. For Y=0.8, three upper stop band 

transmission zeros are reported at 8.75 GHz, 9.75 GHz and 

10.7 GHz, respectively. The input reflection coefficient 

(S11)>-10dB and transmission loss (S21) of -0.07dB are 

reported for Y= 0.7, 0.77,and 0.8. 

 

5. Conclusion 

In proposed work, dual-mode bandpass filter is realized 

from multimode resonator. Dual mode response is achieved 

by integrating an stepped admittance perturbation in to the 

MMR. By changing admittance ratio Y of stepped 

admittance perturbation, center frequency and Bandwidth 

are tuned and three upper stopband transmission zeros are 

created. The location of all upper stopband transmission 

zeros are controlled by admittance ratio. 
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Admittance 

Ratio (Y) 

Center 

frequency in 

GHz 

Bandwidth 

in GHz 

Location of Upper 

stopband transmission 

zeros at  

 0.7 5.157 3 8.44 GHz and 

9.8GHz. 

0.77 5.3  

3.2 

8.750GHz,9.75GHz 

and 10.50GHz 

 0.8 5.4 3.4 8.750GHz,9.75GHz 

and 10.50GHz 
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