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Abstract. An efficient numerical-based accelerating method for the computation of radar cross section of conducting dihedral corner 

reflector is presented. The RCS formulation is based on Method of Moments. The integral equation describing the scattering problem is 

discretized into a set of linear system of equations, which in turn is solved for the equivalent currents defined on the structure via equivalence 

principle. The equivalent currents thus obtained are further processed to determine the radar cross section. The entire process is further 

improved in terms of computational memory and time for larger number of unknowns by means of Conjugate Gradient-based accelerating 

algorithm. The computed results are validated against those obtained through simulation in COMSOL and the measurements. 
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1. Introduction 

Radar cross section (RCS) [1] can generally be described 

as the detectability of a target evaluated by means of 

quantifying the echo signal. It is a measure of the ability of 

the target to reflect the signal towards the radar receiver. The 

term RCS is significant especially in stealth aircraft 

technology where the aircraft should go undetected by the 

hostile radar. This necessitates the aircraft parts to be 

manufactured in such a way as to minimize the RCS. 

Similarly, there are circumstances wherein the RCS of 

structures needs to be enhanced. In both cases, the prediction 

of RCS is inevitable and it essentially involves the analysis 

of scattered fields. 

Several high frequency-based, as well as numerical based 

techniques have been proposed to compute the RCS of 

various structures. Method of Moments (MoM) [2] is a low-

frequency computational method that essentially involves 

solving the integral form of Maxwell's equations. The 

technique had been used with Electric Field Integral 

Equations (EFIE) to analyze the scattering from arbitrary 

surfaces [3] and scattering patterns could be generated for 

different structures, for e.g. cylinders of any cross section 

[4]. One of the main features of MoM is that the method 

could be applied to any geometry and is also applicable to 

the inhomogeneous dielectric. The basic procedure of MoM 

ends up in a system of linear equations that has to be solved 

for the unknown currents usually through matrix inversion. 

Although MoM provides considerable flexibility in terms of 

geometry, it becomes computationally exhaustive for 

electrically large objects [5]. Thus a powerful computer 

hardware is required to handle such huge computational 

memory and time requirement. 

In this paper, a hybrid approach combining the Method of 

Moments with an accelerating Conjugate Gradient (CG) 

algorithm is applied to compute the RCS of a conducting 

dihedral corner reflector. This algorithm is introduced to 

rectify to an extent, the huge computational complexity 

stated above. The computed results are compared and 

validated with the simulated results using COMSOL 

multiphysics simulation tool. One of its add on modules 

named RF module is used in RCS calculation, which is 

based on Finite Element Method (FEM).  

A basic dihedral corner reflector is made up of two flat 

rectangular metal plates connected at right angle to each 

other, as shown in Figure 1. It is a retroreflector i.e., it 

reflects back the field directly opposite to the incident 

direction, thus enhancing RCS. The geometry of a corner 

reflector provides very large value of RCS for wide range of 

viewing angles. Hence it finds application in radar 

calibration and is used as a test target. Moreover, this 

structure forms a significant part in an aircraft. The tail of an 

aircraft can be conveniently represented by a dihedral which 

essentially consists of two flat plates joined at a specific 

angle. It forms a major contributor towards the RCS of an 

aircraft along with other parts like fuselage and wings. 

2.  Method of Moments  

In problems relating to RCS computation, 

electromagnetic radiation generated from an external source 

is incident on the object and currents are generated on them. 

The generated currents radiate further to give the scattered 

field. 

The technique basically involves formulation of surface 

integral equation based on surface equivalence principle for 

a scattering object, then solving for the unknown currents 

and finally integrating to obtain the scattered field. Most of 

the complex electromagnetic scattering problems cannot be 

solved analytically. Such problems, either deterministic or 

eigenvalue and two or three dimensional electromagnetic 

scattering problems, are computed numerically. 

 

 

 

 

 

 

Fig. 1. A basic dihedral corner reflector 
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2.1.  Basic procedure 

In the scattering analysis of a perfectly conducting 

dihedral structure, the Electric Field Integral Equation 

(EFIE) formulated by applying the boundary conditions and 

surface equivalence principle is given by [2] 
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The scattered electric field is given by, 

       rErnrErn insca  ˆˆ             (2) 

where Einc represents the incident field, Esca represents the 

scattered field, G(ro,rs) is the Green’s function, J(rs) the 

unknown current density and rs, ro are the source and 

observation points respectively. 

The EFIE has to be transformed to a set of homogeneous 

equations. Initially, the surface of the structure is discretized 

into a number of patches. 

The unknown function is assigned to each cell of the 

surface patch model. The unknown function in the integral 

equation is expressed as a weighted sum of basis functions.  

Following this, the testing functions are incorporated into it. 

The basis and the testing functions may be either pulse or 

triangular functions. Finally, a linear system of equations is 

obtained that could be well represented in matrix form as in 

Eq. (3) and solved for x, which will be the unknown current 

density. 

                                                 BAx                                (3) 

2.2.  Formulation 

RCS estimation can be either monostatic or bistatic. 

Monostatic RCS determination essentially involves both the 

transmitting and the receiving antennas to coincide with 

each other, so the scattering analysis is performed for 

different viewing angles. For bistatic RCS determination, the 

transmitter is fixed at a certain position, and the receiver is 

varied along a range of angles. In the present context, the 

formulation is done for monostatic RCS. 

A perfectly conducting dihedral corner reflector with the 

orientation as given in Figure 2 is the scatterer considered. A 

plane wave [6] propagating in the z-direction is assumed to 

be incident on the object and can be mathematically 

expressed as: 

zeE yxjk

inc
ˆ)sincos( 


     (4) 

where, ϕ represents the angle of incidence, and ϕ is varied 

from -180
0
 to +180

0
. The backscattered field is separately 

calculated for the incident field vector for each angle. 

The total field, Etot generated due to the source is the sum 

of incident field, Einc and scattered field, Esca. 

    incscatot EEE i


      (5) 

For a perfect conductor, the total field on the surface will 

be zero [7]. The original source is substituted with numerous  

 

 

 

 

 

 

 

 

 

Fig. 2. Dihedral structure-schematic 

equivalent sources on the surface according to Huygens’ 

surface equivalence principle. 

The scattered field is derived as an integral of Hankel 

function and the equivalent source field [4]. 
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where, εr is the relative permittivity of the material, 

H0
(2)

(kρos) represents the Hankel function of second kind and 

zeroth order, and Es represents the unknown source within 

each cell. 

Substituting Einc and Esca in Eq. (5), one gets 
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In order to solve for the unknowns using MoM, 

discretization of the structure is performed and equivalent 

sources are incorporated within each cell. For the dihedral 

shape, the cross section in the X-Y plane is considered for 

surface discretization and further formulation.  

 

 

 

 

 

 

Fig. 3. Discretization of dihedral cross section  
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The right angled structure is discretized into N number of 

small square cells (Figure 3), such that the electric field 

intensity and dielectric constant remains constant within 

each cell. Since the material is assumed to be homogeneous, 

the relative permittivity is constant for all the cells. The 

equivalent sources are assumed to be concentrated at the 

centre of each cell. If (xs,ys) and (xo,yo) represents the 

coordinates of source and observation points respectively, 

the distance between them is given by: 

   22
sosoos yyxx       (8) 

Incorporating discretization in Eq. (7), the vector 

representing the total field in a single cell m due to the 

sources in all cells can be related as: 
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The expression is simplified to Eq. (10) for the perfectly 
conducting case by reducing the term Em to zero. 
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Similarly, the equations can be generated for all the N 
cells on the structure. The integral of the Hankel function 
makes the formulation slightly complicated. This could be 
solved by approximating the discretized cells to be circular. 
By doing so, a simple form of solution is available for the 
surface integral of Hankel function of zero-order, which 
could be directly applied in the formulation. The solution for 
Hankel function for circular cell is given by: 
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The two cases correspond to the relative position of 

source and observation points, the former corresponds to 

overlapping points while the latter defines well-separated 

points. Eq. (10) can thus be represented in a linear form as: 
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Em_inc represents the incident wave vector, k represents the 

wave number, εr the relative permittivity of the material, 

J1(kan) represents Bessel function of first order and an 

represents the radius of a single circular cell. The unknown 

vector En that represents scattered field could be solved by 

matrix inversion. But for larger objects, the number of 

unknowns would be too large so that the computation 

becomes complex in terms of memory and computation 

time. An algorithm could be incorporated to solve them 

which will be dealt in the next section. 
The scattered field determined could be further processed 

to compute the RCS. The final expression for two-
dimensional RCS as a function of azimuthally varying 
viewing angle, ϕ is given by: 
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The above expression can be used to determine both 

monostatic as well as bistatic RCS. Monostatic RCS is 

obtained by following the above steps as such. But for 

determining bistatic RCS, the incident plane wave is 

assumed to be fixed at a particular direction ie., the values of 

θinc and ϕinc respectively, are made constant. The scattered 

field for this incident field is calculated over a range of 

either azimuthal or elevation angles keeping the other term 

fixed. So bistatic RCS as a function of either θsca or ϕsca can 

be plotted. 

3.  Conjugate gradient algorithm 

Conjugate Gradient (CG) Method is essentially a non-
stationary iterative technique followed accelerating 
algorithm [8]. The method involves solving the matrix 

equation, Ax=B, where A is the NN Hermitian positive 
definite vector that corresponds to the term Gmn in Eq. (12), 

x is the unknown N1 vector to be determined and B is the 

N1 vector describing the incident electric field. Consider a 
quadratic equation [9], 

  RcAxxxBcxP TT  ,
2

1      (14) 

The objective of CG algorithm is to find a minimum value 

for P. So, assuming c = 0 and equating gradient of P to be 

zero yields the solution of the matrix equation. 

The basic procedure of the CG method is explained in the 

flowchart shown in Figure 4. The algorithm involves the 

following computations: 

1. Initialization of the unknown vector, xk, 
residual, rk and search direction, d0: 
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Fig. 4. Conjugate Gradient Method - Flowchart  

2. Step length for the next vector solution, 
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3. Next approximate solution, 
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4. Revised residual, 
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       1 kkkk drd        (20) 

7. New deviation, 
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Continue steps 2 to 7 until Nn > ε. The latest xk+1 will be 

the required solution. Comparing to Eq. (12), xk+1 

correspond to En. Using MoM-CG algorithm, the unknown 

vector, En is obtained, which can further be employed for 

RCS computation given in Eq. (13).  

4.  Results and discussions 

Using the above formulation, the monostatic RCS of a 

perfectly conducting dihedral corner reflector is computed 

using FORTRAN 90 and validated against simulated results 

of COMSOL. The material considered is aluminium metal. 

The scattered fields were analyzed for the TM polarized 

incident field at viewing angle varying azimuthally from            

-180
0
 to 180

0
. The normalized RCS has been plotted against 

the azimuthal angle, ϕ. 

 Results are obtained for different dimensions and 

frequencies. Figure 5 shows the monostatic RCS of a 

dihedral corner reflector with length and thickness of the 

plate is 0.3 m and 0.015 m respectively. A frequency of 9.4 

GHz is considered [10]. The computed results are validated 

against those of COMSOL. It may be observed that both 

results are in excellent agreement. The corresponding polar 

plot is depicted in Figure 6. 
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Fig. 5. Normalized RCS of a dihedral at frequency of 9.4 GHz 

(length of plate = 0.3m, thickness of plate = 0.015m) 
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Fig.6. Polar plot showing the normalized RCS of a dihedral at 

frequency of 9.4 GHz (length of plate = 0.3m, thickness of plate = 

0.015m) 

Normalized RCS is computed for a dihedral corner 

reflector of another dimension, 0.3 m  0.005 m at a 

frequency of 5 GHz. Figure 7 depicts this plot and its 

comparison with simulated COMSOL results. Figure 8 

shows a comparison between simulated and computed 

monostatic RCS at 5 GHz for plate length reduced to 0.2 m, 

while the thickness maintained at 0.005 m. 
The computed results show good agreement with 

simulated results establishing the authenticity of the 
numerical method employed. The plots show that the RCS is 
significant for azimuthal angles between 0

0
 and 90

0
 with a 

maximum at 45
0
. This region corresponds to the 

retroreflector. The peaks at 0
0
 and 90

0
 can be attributed to 

the reflections from edges of the plates. The property of a 
corner reflector of providing a sharper reflection at the 
corner is found to be more prominent at higher frequencies. 
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 Fig. 7. Normalized RCS of a dihedral at frequency of 5 GHz 

(length of plate = 0.3 m, thickness of plate = 0.005 m) 
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Fig. 8. Normalized RCS of a dihedral at frequency of 5 GHz 

(length of plate = 0.2 m, thickness of plate = 0.005 m) 

The computed result is validated against the experimental 
[11] results as well. The mismatches in the results are due to 
errors in the measurement setup. The computed results 
match excellently with the COMSOL results. Figure 9 shows 
the comparison among measured, simulated and computed 
RCS of a dihedral 92

0
 corner reflector made of aluminum 

with plate dimension of 0.3m × 0.005m at 9.4 GHz 
frequency. For the analysis, the dihedral structure has been 
placed in such a way that its two-dimensional cross section 
lies in the XY plane symmetrical to X-axis. A step size of 4

0
 

is considered for the viewing angles ranging between 0
0
 and 

360
0
. 

Using MoM-CG formulation, bistatic RCS of a dihedral 
corner reflector is also computed in FORTRAN 90 and 
plotted. Figure 10 shows the plot of normalized RCS against 
scattering angle, ϕsca for dimensions 0.3m × 0.005m at 9.4 
GHz frequency for an incident electric field at θinc = 0

0
, 

thereby 0.1E


V/m. Figure 11 shows another plot of 

normalized RCS for the same dimensions but the incident 

electric field at θinc = 90
0
 and ϕinc = 45

0
. Here the number of 

discretized cells, N is taken to be 476. Now, if N is reduced 

to 118, the plot will be less accurate as shown in Figure 12. 

For more precise results, the structure has to be 

appropriately discretized. 
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Fig. 9. Normalized RCS of a dihedral at frequency of 5 GHz (length of plate 
= 0.2 m, thickness of plate = 0.005 m) 
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2D Graph 3
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Fig. 10. Normalized Bistatic RCS of a dihedral at frequency of 5 GHz 

(length of plate = 0.3 m, thickness of plate = 0.005 m) at Ē=1.0 V/m 

Table 1 shows the computation time required for the 

calculating the bistatic RCS of a dihedral structure of 

dimensions 0.3λ  0.002λ using MoM and MoM-CG for 

different discretization levels. It is observed that at lower 

discretization level, there is no significant difference 

between the time elapsed for both the methods, but as the 

number of discretized cells are increased, the time 

requirement become half through the incorporation of the 

algorithm. So it is clear that MoM-CG is more efficient than 

MoM especially at higher discretization levels which are 

required for highly accurate results. The method is found to 

be more suitable for electrically smaller structures. 

For the calculation of monostatic RCS, the computation 

time depends not only on the number of discretized cells but 

also on the range of viewing angle and the step size chosen. 

This is because the solution of the matrix equation has to be 

calculated for each of the viewing angles and thereby 

leading to larger number of iterations. So the computation 

time will be higher for monostatic RCS than bistatic one. 

This is clearly shown in Table 2, which illustrates the 

comparison between the computation time for monostatic 

and bistatic RCS of a dihedral corner reflector for different 

discretization levels and range of viewing angle. It is evident 

that there is a large difference in the elapsed time for bistatic 

and monostatic RCS computation. The difference is also 

visible for the same discretization level but different range of 

angles. The larger time requirement for monostatic RCS can 

be attributed to the matrix solution calculated for every 

viewing angle. 

The elapsed time increases with increase in the number of 

equations since the number of unknowns increases affecting 

the solution of matrix equation to be more complex. The 

computation time will be even higher with further increase 

in the extent of discretization. Increasing the step size may 

help in reducing the computation time but at the cost of 

accuracy of results.  

Table 1: Comparison between MoM and MoM-CG for 
bistatic RCS computation with respect to discretization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Comparison between the computation time for 

calculating monostatic RCS and bistatic RCS using Mom-

CG 

 

Discretizati
on level 

(Number of 
equations) 

Range of 
Scattering 

angle 

Elapsed Time (in 
seconds) 

Number 
of 

iterations 
(for 

bistatic 
RCS) 

Monostatic 
RCS 

Bistatic 
RCS 

236 
(-1800,1800) 11.591 2.184E-2 

102 
(-450,1350) 5.834 2.028E-1 

476 
(-1800,1800) 60.185 1.232 

165 
(-450,1350) 20.264 1.186 

716 
(-1800,1800) 143.973 3.089 

197 
(-450,1350) 72.852 3.026 

956 
(-1800,1800) 266.419 6.099 

223 
(-450,1350) 133.162 6.068 

1196 
(-1800,1800) 424.899 10.452 

247 
(-45,135) 215.032 10.312 

5. Conclusion 

The work reported here establishes that MoM-CG is an 

accurate and an efficient method for the computation of RCS 

of electrically large structure. The large time requirement 

that would occur in case of normal MoM implementation 

has been reduced to a certain extent by using the CG-based 

accelerating algorithm, where linear equations were solved 

in an iterative fashion reducing the complexity of matrix 

inversion. For a conducting dihedral corner reflector, the 

results obtained numerically are compared with those 

obtained from simulation and also with experimental results. 

The computed plots for different frequencies and dimensions 

are found to match almost exactly with the corresponding 

simulation results. The method could be extended to other 

geometries as well.  
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